This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Isobaric Vapour-Liquid Equilibrium of Some Cyclic Ethers with Bromobenzene at Several Pressures

S. RodrÍguezª; C. Lafuenteª; P. Ceaª; M. C. LÓpezª; F. M. Royoª ^a Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain

Online publication date: 27 October 2010

To cite this Article RodrÍguez, S. , Lafuente, C. , Cea, P. , LÓpez, M. C. and Royo, F. M.(2002) 'Isobaric Vapour-Liquid Equilibrium of Some Cyclic Ethers with Bromobenzene at Several Pressures', Physics and Chemistry of Liquids, 40: 6, 715 – 725

To link to this Article: DOI: 10.1080/00319100290032686 URL: http://dx.doi.org/10.1080/00319100290032686

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ISOBARIC VAPOUR-LIQUID EQUILIBRIUM OF SOME CYCLIC ETHERS WITH BROMOBENZENE AT SEVERAL PRESSURES

S. RODRÍGUEZ, C. LAFUENTE, P. CEA, M.C. LÓPEZ and F.M. ROYO*

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain

(Received 10 May 2001)

A dynamic recirculating still was employed to study the isobaric vapour–liquid equilibrium (VLE) at 40.0 and 101.3 kPa for the binary systems tetrahydrofuran, tetrahydropyran, 2-methyl-tetrahydrofuran and 2,5-dimethyl-tetrahydrofuran with bromobenzene. The experimental data were tested for thermodynamic consistency and correlated with the Wilson, NRTL and UNIQUAC equations. Predictions with the UNIFAC method were also obtained.

Keywords: Isobaric VLE; Cyclic ethers; Bromobenzene

INTRODUCTION

In previous papers from our laboratory we have reported isobaric vapour-liquid equilibrium (VLE) measurements for some cyclic ethers with chlorobenzene [1] or chlorocyclohexane [2]. Following these studies we present here experimental data of the isobaric VLE for the mixtures of a cyclic ether (tetrahydrofuran, tetrahydropyran, 2-methyl-tetrahydrofuran and 2,5-dimethyl-tetrahydrofuran) with

^{*}Corresponding author.

ISSN 0031-9104. Online ISSN 1029-0451 © 2002 Taylor & Francis Ltd DOI: 10.1080/00319100290032686

bromobenzene at 40.0 and 101.3 kPa. As far as we know, these systems have not been investigated.

For each mixture, the VLE results have been checked for thermodynamic consistency and the activity coefficients have been correlated with the following models: Wilson [3], NRTL [4] and UNIQUAC [5].

Apart from this experimental work we have verified the accuracy in the prediction of vapour-liquid equilibrium of the UNIFAC method [6].

EXPERIMENTAL

The liquids used were tetrahydrofuran (better than 99.5 mol%), tetrahydropyran, 2-methyl-tetrahydrofuran and 2,5-dimethyl-tetrahydrofuran (better than 99 mol%) obtained from Aldrich together with bromobenzene (better than 99.5 mol%) provided by Fluka. The purities of the materials were checked by gas chromatography and they were used without further purification. The comparison of measured physical properties of the chemicals, densities and normal boiling points, with literature values [7–11] are shown in Table I.

The still used to measure VLE data was an all-glass dynamic recirculating one, equipped with a Cottrell pump. It is a commercial unit (Labodest model) built in Germany by Fischer. The equilibrium temperatures were measured to an accuracy of ± 0.01 K by means of a thermometer (model F25) from Automatic Systems Laboratories, and the pressure in the still was measured with a pressure transducer Druck PDCR 110/W (pressure indicator DPI201) with an accuracy of ± 0.1 kPa. Compositions of both phases vapour and liquid were determined by measuring their densities at 298.15 K with an Anton Paar

TABLE I	Physical	properties	(densities	at 298	.15 K	and	normal	boiling	points)	of	the
pure compo	ounds										

Compound	$ ho/{ m g}$	cm^{-3}	$T_b/{ m K}$	
	This paper	Lit.	This paper	Lit.
Tetrahydrofuran	0.88209	0.88197 [7]	339.12	339.115 [11]
Tetrahydropyran	0.87915	0.87196 [8]	361.17	361 [10]
2-Methyl-tetrahydrofuran	0.84990	0.84882 9	352.94	353.1 [10]
2,5-Dimethyl-tetrahydrofuran	0.82527		365.08	365.65 [11]
Bromobenzene	1.48818	1.48820 [10]	429.01	429.058 [10]

716

DMA-58 vibrating tube densimeter that was previously calibrated at atmospheric pressure with doubly distilled water and dry air. Prior to this, density-calibration curves for these systems were obtained [12], the estimated error in the determination of both liquid and vapour phase mole fractions is ± 0.0001 .

RESULTS

The VLE data $(T, x_1, \text{ and } y_1)$ together with calculated activity coefficients at 40.0 and 101.3 kPa, are gathered in Table II and the temperature–composition diagrams are represented in Figs. 1–4.

The activity coefficients γ_1 were calculated, taking into account the non-ideality of the vapour phase, from the following equations:

$$\gamma_{i} = \frac{\gamma_{i}P}{x_{i}p_{i}^{\circ}} \exp\left[\frac{(B_{ii} - V_{i}^{\circ})(P - p_{i}^{\circ}) + (1 - y_{i})^{2}P\delta_{ij}}{PT}\right]$$
(1)

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{2}$$

where x_i , and y_i are the liquid and vapour phase compositions, P is the total pressure, p_i° are the vapour-pressures of the pure compounds, B_{ii} are the second virial coefficients, B_{ij} are the cross second virial coefficients and V_i° are the molar volumes of the saturated liquids. The correction for the non-ideality of the vapour phase, represented by the exponential term in Eq. (1), was important only at very dilute concentrations.

The Antoine equation has been used for calculating the vapour pressures of the pure compounds and the corresponding constants are listed in Table III. Antoine's constants for tetrahydrofuran, 2-methyl-tetrahydrofuran and 2,5-dimethyl-tetrahydrofuran were taken from TRC tables [11], for bromobenzene were obtained from Riddick *et al.* [10], and those for tetrahydropyran were obtained from our own vapor pressure measurements. The second virial coefficients have been estimated using the Redlich–Kwong equation [13]. The cross second virial coefficients have been calculated by means of a suitable mixing rule [14]. The molar volumes were calculated using the Yen and Woods method [15].

T/K	x_I	У1	γ1	γ_2			
Tetrahydrofuran + bromobenzene at 40.0 kPa							
393.34	0.0115	0.1192	0.988	0.986			
388.98	0.0259	0.2284	0.926	1.007			
381.72	0.0609	0.4235	0.863	0.990			
376.37	0.0891	0.5379	0.852	0.983			
355.88	0.2281	0.8193	0.869	0.969			
346.24	0.3175	0.8920	0.901	0.971			
338.62	0.4158	0.9436	0.922	0.823			
330.89	0.5316	0.9693	0.955	0.795			
324.96	0.6508	0.9824	0.971	0.811			
318.22	0.8030	0.9929	1.015	0.813			
315.12	0.9052	0.9975	1.016	0.698			
313.50	0.9669	0.9992	1.014	0.697			
Tetrahydrofur	an + bromobenzene	at 101.3 kPa					
420.91	0.0363	0.2229	0.848	1.001			
414.67	0.0673	0.3720	0.857	0.990			
409.79	0.0936	0.4713	0.857	0.983			
402.01	0.1417	0.6064	0.852	0.969			
389.63	0.2319	0.7700	0.862	0.927			
381.09	0.3059	0.8449	0.873	0.915			
372.93	0.3824	0.8976	0.904	0.899			
364.52	0.4836	0.9354	0.926	0.921			
358.01	0.5711	0.9625	0.962	0.825			
353.71	0.6476	0.9743	0.969	0.815			
346.62	0.7884	0.9891	0.995	0.769			
340.55	0.9417	0.9979	1.013	0.697			
Tetrahydropy	ran + Bromobenzene	at 40.0 kPa					
395.09	0.0080	0.0413	0.853	1.012			
393.73	0.0163	0.0823	0.861	1.020			
392.77	0.0274	0.1356	0.863	1.001			
387.58	0.0659	0.3041	0.912	0.990			
381.11	0.1189	0.4741	0.927	0.983			
376.97	0.1604	0.5594	0.903	0.995			
368.98	0.2485	0.7055	0.914	0.987			
361.78	0.3397	0.8073	0.940	0.961			
353.55	0.4762	0.8860	0.945	0.988			
347.69	0.5895	0.9324	0.968	0.950			
339.77	0.7911	0.9779	0.988	0.857			
334.96	0.9373	0.9952	1.006	0.769			
Tetrahydropy	ran + bromobenzene	at 101.3 kPa					
425.27	0.0238	0.1097	1.003	1.001			
422.86	0.0423	0.1831	0.992	1.005			
419.93	0.0655	0.2669	0.989	0.999			
415.16	0.1062	0.3810	0.958	1.004			
408.63	0.1629	0.5214	0.979	0.996			
403.16	0.2215	0.6166	0.958	1.005			
397.72	0.2863	0.6840	0.929	1.064			
389.54	0.3972	0.7932	0.941	1.064			

 TABLE II
 Experimental VLE data at the indicated pressure

(Continued)

T/K	<i>x</i> 1	<i>Y1</i>	γ1	γ_2
383.36	0.4943	0.8687	0.965	0.985
376.70	0.6192	0.9277	0.977	0.902
370.09	0.7581	0.9635	0.991	0.905
364.67	0.8903	0.9876	1.007	0.905
2-Methyl-tetrahydrof	uran + bromobenze	ne at 40.0 kPa		
391.28	0.0272	0.1603	0.872	1.019
387.28	0.0505	0.3052	0.982	0.982
383.56	0.0723	0.3788	0.931	1.016
375.19	0.1322	0.5886	0.974	0.957
367.88	0.1908	0.6882	0.957	1.010
363.31	0.2412	0.7511	0.936	1 019
352.02	0.3748	0.8736	0.972	0.977
345.25	0.4769	0.9223	0 994	0.950
339.36	0.6017	0.9529	0.985	0.976
331.20	0.8031	0.9845	1 007	0.941
329.02	0.8631	0 9904	1.018	0.928
326.75	0.9564	0.9969	1.004	1.049
2-Methyl-tetrahydrof	uran⊥bromobenze	ne at 101 3 kPa		
425 00		0 1127	1 084	0.982
420.86	0.0189	0.2505	1.027	0.982
416.03	0.0700	0.2303	0.051	1.006
410.03	0.0799	0.4625	0.951	1.000
405.57	0.1192	0.4033	0.934	1.000
204 50	0.1595	0.3401	0.919	0.004
383.05	0.2077	0.7210	0.902	1.010
373.07	0.5926	0.0400	0.903	0.030
368.00	0.5500	0.9201	0.991	0.930
364.65	0.0285	0.9470	1 001	0.925
250.60	0.0909	0.9033	1.001	0.007
255.86	0.0122	0.9810	1.007	0.897
555.80	0.9152	0.9932	1.008	0.822
2,5-Dimethyl-tetrahy	drofuran + bromobe	enzene at 40.0 kPa		
391.86	0.0275	0.1465	1.101	1.017
388.16	0.0527	0.2629	1.124	1.015
385.09	0.0755	0.3442	1.106	1.023
381.41	0.1044	0.4466	1.135	1.007
377.10	0.1430	0.5402	1.118	1.013
370.56	0.2103	0.6628	1.107	1.016
361.60	0.3260	0.8012	1.106	0.978
357.65	0.4043	0.8514	1.063	0.963
349.53	0.5612	0.9122	1.049	1.070
346.18	0.6488	0.9384	1.038	1.078
341.17	0.8051	0.9716	1.020	1.110
339.29	0.8682	0.9808	1.017	1.205
2,5-Dimethyl-tetrahy	drofuran + bromobe	enzene at 101.3 kPa		
425.04	0.0268	0.1359	1.317	0.988
421.12	0.0551	0.2403	1.219	0.992
417.68	0.0772	0.3029	1.172	1.023

TABLE II Continued

(Continued)

TABLE II Continued

T/K	x_I	У1	γ1	γ_2
413.71	0.1109	0.4164	1.212	0.991
408.28	0.1602	0.5188	1.167	1.008
403.04	0.2145	0.6217	1.166	0.987
394.79	0.3185	0.7355	1.114	1.020
388.34	0.4358	0.8356	1.073	0.939
383.01	0.5323	0.8810	1.053	0.976
378.33	0.6302	0.9161	1.039	1.019
371.27	0.8110	0.9670	1.023	1.003
368.65	0.8895	0.9791	1.014	1.194
367.66	0.9217	0.9857	1.012	1.196

FIGURE 1 $T - x_1 - y_1$ diagram for tetrahydrofuran + bromobenzene: (\circ , \bullet) exptl. data at 40.0 kPa; (\Box , \blacksquare) exptl. data at 101.3 kPa; (-) Wilson equation.

The thermodynamic consistency of the experimental results was checked using the Van Ness method [16], described by Fredenslund *et al.* [17], using a third order Legendre polynomial for the excess free energies. All the experimental data are consistent (average deviations in y smaller than 0.01), the results are shown in Table IV.

The activity coefficients were correlated with the Wilson, NRTL and UNIQUAC equations. Estimation of the parameters for all the

FIGURE 2 $T - x_1 - y_1$ diagram for tetrahydropyran + bromobenzene: (\circ , \bullet) exptl. data at 40.0 kPa; (\Box , \blacksquare) exptl. data at 101.3 kPa; (-) Wilson equation.

FIGURE 3 $T - x_1 - y_1$ diagram for 2-methyl-tetrahydrofuran + bromobenzene: (\circ , \bullet) exptl. data at 40.0 kPa; (\Box , \blacksquare) exptl. data at 101.3 kPa; (-) Wilson equation.

FIGURE 4 $T - x_1 - y_1$ diagram for 2,5-dimethyl-tetrahydrofuran + bromobenzene: (\circ, \bullet) exptl. data at 40.0 kPa; (\Box, \blacksquare) exptl. data at 101.3 kPa; (—) Wilson equation.

TABLE III Constants of Antoine's equation for vapour pressures of the pure compounds (temperature in $^{\circ}C$, pressure in kPa)

Compound	A	В	С
Tetrahydrofuran	6.12142	1203.11	226.355
Tetrahydropyran	5.85520	1131.93	205.83
2-Methyl-tetrahydrofuran	5.95009	1175.51	217.802
2,5-Dimethyl-tetrahydrofuran	5.69272	1099.53	205.719
Bromobenzene	6.37912	1688.4	230

equations was based on minimization, using a non-linear regression procedure [18], of an objective function F in terms of experimental and calculated γ_i values. The function F for a binary system [19] can be stated as:

$$F = \sum_{i=1}^{i=N} \left[\left(\frac{\gamma_1^{\text{exptl}} - \gamma_1^{\text{cal}}}{\gamma_1^{\text{exptl}}} \right)^2 + \left(\frac{\gamma_2^{\text{exptl}} - \gamma_2^{\text{cal}}}{\gamma_2^{\text{exptl}}} \right)^2 \right]_i$$
(3)

System	P/kPa	$\Delta P/\mathrm{kPa}$	Δy
Tetrahydrofuran + bromobenzene	40.0	1.1	0.0073
	101.3	1.7	0.0095
Tetrahydropyran + bromobenzene	40.0	0.4	0.0032
	101.3	1.2	0.0038
2-Methyl-tetrahydrofuran + bromobenzene	40.0	0.3	0.0056
	101.3	2.1	0.0052
2,5-Dimethyl-tetrahydrofuran + bromobenzene	40.0	0.3	0.0030
	101.3	1.0	0.0081

TABLE IV Results of the thermodynamic consistency test. Average deviation in $P(\Delta P)$, and average deviation in $y(\Delta y)$

where N is the number of experimental data. These adjustable parameters, A_{12} and A_{21} , along with the average deviation in $T(\Delta T)$, the average deviation in y (Δy) and the activity coefficients at infinite dilution are listed in Table V. The average deviation in temperature is less than 0.5 degree and in vapor composition is less than 0.01, so all the equations correlate the activity coefficients quite well.

The systems present a behaviour near to ideality at both pressures, showing slightly negative deviations for tetrahydrofuran and slightly positive deviations for 2,5-dimethyltetrahydrofuran. The specific interactions between the components (Br–O and π (aromatic ring)–O) are practically compensated by the breaking of the dipole–dipole interactions in the pure liquids. This behaviour is very similar to that observed for the systems with chlorobenzene.

VLE Predictions

We have used the UNIFAC method to predict the VLE of the systems with tetrahydrofuran and tetrahydropyran, for systems containing 2-methyl-tetrahydrofuran and 2,5-dimethyl-tetrahydrofuran the UNIFAC method cannot be applied because the necessary van de Walls parameters are not available.

Table VI shows the average deviation in temperature and vapourphase composition obtained applying the UNIFAC method. As one can see in this table the predictions are unsatisfactory, specially for the mixture tetrahydrofuran with bromobenzene. These predictions are worse than those reported in a previous paper [1] for the mixture

Equation	A_{12}^{a}	A^a_{21}	$\Delta T/\mathrm{K}$	Δy	γ_l^∞	γ_2^∞
Tetrahydrofura	an + bromobenze	ne at 40.0 kPa				
Wilson	- 2396.4940	4552.1503	0.44	0.0068	0.84	0.79
NRTL	5137.0377	-3834.5732	0.39	0.0069	0.83	0.73
UNIQUAC	549.7386	-1000.4572	0.48	0.0047	0.87	0.65
Tetrahvdrofur	an + bromobenze	ne at 101.3 kPa				
Wilson	- 622.5851	-117.2710	0.48	0.0091	0.79	0.67
NRTL	6334.0827	-4467.3310	0.26	0.0066	0.81	0.74
UNIQUAC	- 23.1249	-603.3423	0.40	0.0076	0.81	0.67
Tetrahydropyr	an + bromobenze	ene at 40.0 kPa				
Wilson	-2060.8034	2504.8174	0.28	0.0042	0.88	0.75
NRTL	2810.2538	- 2645.3664	0.27	0.0043	0.87	0.77
UNIQUAC	514.4120	-895.6522	0.28	0.0043	0.88	0.75
Tetrahvdropyr	an + bromobenze	ene at 101.3 kPa				
Wilson	-2205.1798	3188.5321	0.38	0.0074	0.93	0.90
NRTL	2729.2343	-2431.2668	0.38	0.0075	0.93	0.88
UNIQUAC	2764.5386	-2237.9089	0.18	0.0043	1.00	0.77
2-Methvl-tetra	hvdrofuran + bro	mobenzene at 40	.0 kPa			
Wilson	693.1807	-826.9402	0.20	0.0056	0.94	0.93
NRTL	-791.8399	642,1297	0.20	0.0056	0.94	0.93
UNIQUAC	-960.5121	749.3557	0.25	0.0059	0.93	0.96
2-Methyl-tetra	hydrofuran + bro	mobenzene at 10	1.3 kPa			
Wilson	- 2732.3844	4634.5046	0.23	0.0059	0.93	0.98
NRTL	3486.0379	-2872.2729	0.32	0.0065	0.93	0.88
UNIQUAC	3490.8515	-2508.8106	0.38	0.0061	1.03	0.83
2,5-Dimethyl-t	etrahydrofuran +	- bromobenzene a	t 40.0 kPa			
Wilson	- 1943.1815	3335.7584	0.23	0.0035	1.14	1.37
NRTL	3758.6371	-2272.8399	0.27	0.0031	1.13	1.36
UNIQUAC	-480.9168	410.3225	0.34	0.0043	1.16	1.15
2,5-Dimethyl-t	etrahydrofuran +	- bromobenzene a	t 101.3 kPa			
Wilson	1394.2541	-460.2868	0.36	0.0081	1.25	1.17
NRTL	-1349.6238	2290.3544	0.35	0.0078	1.24	1.17
UNIQUAC	3745.4006	-2381.3194	0.39	0.0047	1.23	1.44

TABLE V Correlation parameters, average deviations ΔT and Δy , and activity coefficients at infinite dilution γ_i^{∞}

^a Joules per mole.

TABLE VI UNIFAC VLE predictions, average deviations ΔT and Δy

System	P/kPa	$\Delta T/\mathrm{K}$	Δy
Tetrahydrofuran + bromobenzene	40.0	1.82	0.0118
	101.3	2.34	0.0140
Tetrahydropyran + bromobenzene	40.0	1.56	0.0131
	101.3	0.83	0.0064

tetrahydrofuran and tetrahydropyran with chlorobenzene. This fact can be explained taking into account that UNIFAC has an only group for the bromine atom while presents seven different groups containing the chlorine one. Consequently, the lack of specialization of the bromine group leads to a poorer performance of the method.

References

- S. Rodríguez, H. Artigas, J. Pardo, F.M. Royo and J.S. Urieta (1999). Thermochim. Acta, 336, 85.
- [2] S. Rodríguez, H. Artigas, C. Lafuente, A.M. Mainar and J.S. Urieta (2000). *Thermochim. Acta*, 362, 153.
- [3] G.M. Wilson (1964). J. Am. Chem. Soc., 86, 127.
- [4] H. Renon and J.M. Prausnitz (1968). AIChE J., 14, 135.
- [5] D.S. Abrams and J.M. Prausnitz (1975). AIChE J., 21, 116.
- [6] J.J. Gmehling, J. Li and M. Schiller (1993). Ind. Eng. Chem. Res., 32, 178.
- [7] O. Kiyohara, P.J. O'Arcy and G. Benson (1979). Can. J. Chem., 57, 1006.
- [8] A. Inglese, J.P.E. Grolier and E. Wilhelm (1983). J. Chem Eng. Data, 28, 124.
- [9] L. De Lorenzi, M. Fermeglia and G. Torriano (1995). J. Chem. Eng. Data, 40, 1172.
- [10] J.A. Riddick, W.B. Bunger and T.K. Sakano (1986). Organic Solvents, Techniques of Chemistry, Vol. 2, 4th ed., Wiley-Interscience, New York.
- [11] (1966). TRC-Thermodynamic Tables Non-Hydrocarbons. Thermodynamic Research Center, Texas A and M University, College Station, TX.
- [12] S. Rodíguez, C. Lafuente, M.C. López, F.M. Royo and J.S. Urieta (1997). J. Solution Chem., 26, 207.
- [13] O. Redlich and J.N.S. Kwong (1949). Chem. Rev., 44, 233.
- [14] I. Amdur and E.A. Mason (1958). Phys. Fluids, 1, 370.
- [15] L.C. Yen and S.S. Woods (1968). AIChE J., 12, 95.
- [16] H.C. Van Ness, S.M. Byer and R.E. Gibbs (1973). AIChE J., 19, 238.
- [17] A. Fredenslund, J. Gmehling and P. Rasmussen (1977). Vapor-Liquid Equilibria Using UNIFAC. Elsevier, Amsterdam.
- [18] J.A. Nelder and R. Mead (1965). Comput. J., 7, 308.
- [19] N. Silverman and T.P. Tassios (1984). Ind. Eng. Chem. Process. Des. Dev., 23, 586.